A local maximal inequality under uniform entropy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A local maximal inequality under uniform entropy.

We derive an upper bound for the mean of the supremum of the empirical process indexed by a class of functions that are known to have variance bounded by a small constant δ. The bound is expressed in the uniform entropy integral of the class at δ. The bound yields a rate of convergence of minimum contrast estimators when applied to the modulus of continuity of the contrast functions.

متن کامل

A Uniform Sobolev Inequality under Ricci Flow

Abstract. Let M be a compact Riemannian manifold and the metrics g = g(t) evolve by the Ricci flow. We prove the following result. The Sobolev imbedding by Aubin or Hebey, perturbed by a scalar curvature term and modulo sharpness of constants, holds uniformly for (M, g(t)) for all time if the Ricci flow exists for all time; and if the Ricci flow develops a singularity in finite time, then the s...

متن کامل

An Uniform Sobolev Inequality under Ricci Flow

Abstract. Let M be a compact Riemannian manifold and the metrics g = g(t) evolve by the Ricci flow. We prove the following result. The Sobolev imbedding by Aubin or Hebey, perturbed by a scalar curvature term and modulo sharpness of constants, holds uniformly for (M, g(t)) for all time if the Ricci flow exists for all time; and if the Ricci flow develops a singularity in finite time, then the s...

متن کامل

Measures of maximal entropy

We extend the results of Walters on the uniqueness of invariant measures with maximal entropy on compact groups to an arbitrary locally compact group. We show that the maximal entropy is attained at the left Haar measure and the measure of maximal entropy is unique.

متن کامل

Maximal inequality and Large Deviations 6.1 Kolmogorov’s maximal inequality

Proof. To see L2-convergence, we will prove that (Sn)n>1 is Cauchy in L 2. It is enough to show that ||Sn − Sm||2 < ε for all n,m > N(ε). Suppose n > m, then we obtain ||Sn − Sm||2 = E(Sn − Sm) = E(Xm+1 +Xm+2 + · · ·+Xn) = Var(Xm+1 +Xm+2 + · · ·+Xn) = Var(Xm+1) + Var(Xm+2) + · · ·+ Var(Xn). For any ε > 0, there exists N = N(ε) with ∑∞ i=N Var(Xi) < ε 2, thus we have ||Sn−Sm||2 < ε for all n,m >...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Statistics

سال: 2011

ISSN: 1935-7524

DOI: 10.1214/11-ejs605